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The formula for the electric polarizability of  a molecule using a Frost model 
Lewis basis set, that is one orbital per electron pair, can be extended to include 
wavefunctions containing additional Gaussians using point charge models. 
Using these alternative formulae, results for hydrocarbon Lewis sets and 
molecular fragment wavefunctions are in good agreement with experiment and 
with the results obtained using the original formula. In addition results for 
atomically centred wavefunctions for molecules containing lone pairs are also 
good and show an improvement over the Lewis set results for these species. 
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1. Introduction 

A particularly simple expression for c~, the electric polarizability of a molecule, may 
be obtained from its Frost model wavefunction [1] using symmetry adapted 
perturbation theory [2] or a classical approach [3]. The calculations are restricted 
to Lewis basis sets, that is one orbital per electron pair, containing s- and p-type 
Gaussians [4] though it was shown that the formula could also be used when extra 
inner shell orbitals are added. The inner shell contributions to the molecular 
polarizability are small and so effectively the method was to just calculate valence 
electron terms. Results using the Lewis set wavefunctions were generally very good 
though somewhat less successful for molecules containing lone pair electrons. 

Wavefunctions built from basis sets consisting of a large number of  Gaussians are 
very common [5-8] and, unlike a Lewis set where two electrons may be allocated 
to each Gaussian, it is not always clear as to the occupancy of each Gaussian with- 
out recourse to density and overlap matrices. Moreover, for these large sets it is 
convenient to centre the orbitals on atoms so that their positions do not have to be 
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optimized, relative to atomic centres. It is then the delocalized molecular orbitals, 
rather than the localized single centred ones in the Lewis set case, that provide a 
good description of the bonding regions so important in the calculation of a 
property like the polarizability. For these atomically centred basis sets the formula 
derived for ~ using a Lewis basis set must be extended to cope with the increased 
number of Gaussians. 

For small systems using accurate Hartree-Fock wavefunctions there are probably 
more accurate methods for calculating c~ [9], but we are interested here in methods 
that are applicable to larger systems and even macromolecules, calculations on 
macromolecules wavefunctions containing a large number of Gaussians per basis 
function may well become prohibitively too large and so in this paper we are only 
concerned with wavefunctions containing relatively few Gaussians per basis 
function. An alternative method for macromolecules is the use of fragmenting 
techniques [10] which have met with much success employing a much smaller 
basis set. Even so, once again there are additional Gaussians and the Lewis set 
formula for c~ must be extended. 

Point charge models provide a good description of the electrostatic potential for a 
molecule and various property results have been in good agreement with experi- 
ment [3]. Indeed the Lewis set formula for ~ can be derived in a straightforward 
manner from a particularly simple point charge model. The procedure adopted 
here will be to extend the formula to wavefunctions such as those mentioned above, 
by considering point charge models that are not restricted to Lewis sets. 

2. Point Charge Models 

We consider the problem in terms of point charge models, that is using a classical 
approach. Various point charge models have been suggested, notably those of 
Hall [11, 12], Shipman [13] and Amos and Yoffe [3]. The Hall point charge model 
is an approximation to the electron density p(r) where, summing over the number 
of  orbitals, 

p(r) = 2 ~ Pj~,(r)~oj(r) (1) 
ij  

where P~j is an element of the density matrix calculated from an SCF wavefunction 
and q~(r) and ~j(r) are normalized spherical Gaussian orbitals with centres R~, Rj 
and exponents % ~j respectively. Their product, written q~j(r), will also be a 
spherical Gaussian with centre 

R~j - cqRi + %Rj (2) 
a~ 4- a j  

and exponent 2a~j where 

% = (,~, + ~ ,3 /z  (3) 
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Thus p is a sum of spherical Gaussians and the point charge model is to replace 
Eq. (1) by 

p*(v) = 2 ~ P, jSij~(r - R~j) (4) 
f f  

where S~j is the overlap between q~ and q~j. The model, therefore, places charges 
Z,j = 2P~jS~j at positions R~j and we associate Gaussian ~,j and frequency oJ,j. = 2~,j 
with charge Z,j. 

The Shipman point charge model redistributes off centre charges in Hall's model 
onto Gaussian centres by rewriting the total charge Z as 

Z = ~ q, (5) 
i 

with 

~ 2c~Z~j 
q~ = . (c~, + %)' (6) 

Then the point charge approximation to Eq. (1) is 

p*(r) = ~ q~3(v - R,) (7) 

which places charges q~ at positions R~ and we associate Gaussian ~ and frequency 
o~, = 2a, with charge q,. 

The Amos-Yoffe model was much simpler than the other two but gave similar 
results for various molecular properties. It is an approximation to the electron 
density y(r) where 

~(r) = 2 ~ ~(~)~,(r) (8) 
i 

given by 

p*r(r) -- 2 ~ 3(r - R~) (9) 

which amounts to simply placing a charge of 2 at each Gaussian centre and we 
associate Gaussian ~, and frequency oJ, = 2a~ with the charge 2 placed at R,. 

The central properties satisfied by all three models are that the total electronic 
charge and dipole moment are conserved. Unlike the other two methods, however, 
the Amos-Yoffe model is restricted to Lewis basis sets and so it only seems natural 
to turn to the Hall and Shipman models in our search for non-Lewis set formulae. 

3. Formulae  for cz 

We follow a similar approach to before [3] and consider the second order property 
W2 to be calculated using the general expression 

1 w(r)p'(r) dr (10) W2--~ 
J 
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where p'(r) represents the first order change in p(v) due to the perturbation w(r). 
Then the results for the different models correspond to different choices of p'(r). 
Before, we considered the classical equations of motion and the Drude theory [14] 
to find p'(r), and the simplest extension of this theory is to use point charge models 
to compute p'(r) and hence I412. 

We consider the general case of a molecule represented by a set of point charges 
{Z12}, with associated frequencies {~o12}, and the various point charge models will 
simply be specific choices of {Z12}, {~o~}. The point charge density is written 

o*(r) = ~ z12a(,. - nu) (11) 
12 

and when the molecule is perturbed by a static electric field E the equation of 
motion of charge Z12 is 

d2r12 
dt 2 + o~r12 -- E (12) 

where r12 = r - R~, so that 

1 
, (g~) = R12 + ,o-~ e (13) 

on setting the amplitude for the harmonic terms equal to zero. The total density 
will therefore be 

( w--~t E)  (14) P(r)  = S _ ~ . ,  Z 1 2 3 \ r -  R ~ -  

and 

1 E) - 3 ( r -  R~)) (15) 

Since w(r) = - r  and the polarizability a satisfies IV2 = - � 8 9  it follows that 

_~= 1~ - 2  rp'(r) dr 

that is 

Zu ~=Z~. 

1 L ~  - R.) = - ~ z u ( R ~  + ~ (16) 

As before [3] if the electric field is time-dependent it is easy to derive ~(~o), the 
frequency-dependent polarizability, which is 

~(,o) = ~ z_~ (18) 
6O2 - -  Oj2" 

The results for the three models are special cases of Eq. (17). For the Hall model 
using p*(r), given by Eq. (4), we have charges {Zu}, defined in Sect. 2, and fre- 
quencies {oJ~s} (oJ u = 2a~s, defined by Eq. (3)) yielding the formula for the polariza- 
bility aa 

1 ~-, Z u (19) ~ = ~ ~ ~ "  

(17) 
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For  the Shipman model we use p*(r), given by Eq. (7), giving charges o f  {q~}, 
defined by Eq. (6), with frequencies oJ~ (~o~ = 2a 0 yielding the formula for the 
polarizability C~s 

1 ~ q~ (20) = 

Finally, the original formula is to simply use p*y(r) o f  Eq. (9), that  is charges of  2 
with frequencies {oJ~}, as for the Shipman model, giving aAy 

1 ~ 1 (21) = 

For the time dependent case, formulae for the three models are simply obtained 
f rom Eq. (18) by substituting in the values for the point charges and their respective 
frequencies. When ~o = 0, Eq. (18) naturally reduces to Eq. (17) as is to be expected. 

In  quantum mechanical terms the use of  the semi-classical density function P is 
equivalent to assuming the effect o f  the field is taken into account  by a shift in point  
charge positions and that any redistribution of  charges can be neglected. 

4. Results for the Electric Polarizability 

4.1. Lewis Set Wavefunctions 

The formulae o f  Eqs. (19-21) for a are first tested on Frost  model Lewis basis set 
wavefunctions for hydrocarbons and results are compared with experimental values 
in Table 1. The wavefunctions and the results using the formula o f  Eq. (21) for c%y 
have been given previously [15] but the polarizability values are included once 
more for comparison with the other results. The wavefunctions for both Call4 
and C4H6 contain orbitals fixed at the centre o f  CC bonds whilst C4H6 has different 
parameters for inner and outer CH exponents and orbital positions. The wave- 
functions for C6H6 either place p-type Gaussians in alternate CC bonds (BOND),  

Table 1. Electric polarizabilities of some hydrocarbons using Frost model Lewis basis sets ~ 

Molecule b ~AY (Eq. (21)) ~n (Eq. (19)) as (Eq. (20) )  Experimental 

CH4 23.36 23.55 23.53 25.6 ~ 
C2H6 41.25 41.60 41.58 44.7 d 
C2H4 42.22 42.60 42.55 42.2 d 
C2H2 35.15 35.47 35.44 34.9 d 
C3H~ 56.03 56.99 56.84 56.4 ~ 
C3H4 53.85 54.40 54.33 55 ~ 60 e 
C4H6 81.72 82.63 82.51 84 e 
C6H6 (ATOM) 94.52 95.56 95.44 104 d 
C6H6 (BOND) 108.89 109.88 109.78 104 d 

Units of 10 -28 cc. b For wavefunctions see Ref. [15] and Sect. 4. 
~ Ref. [21]. d Ref. [22]. e Ref. [23]. 



152 J .A .  Yoffe 

that is providing a Kekul6 structure, or on alternate CC atoms (ATOM). All wave- 
functions were obtained using the OPIT program [16] at Nottingham and employed 
experimental geometries. Some of the wavefunctions contain p-type Gaussians as 
well as s-type ones and we may use exactly the same formula as before. This point 
is discussed in Sect. 5. 

As can be seen from the table values for ~ for the three methods are very similar 
and are in good agreement with experiment. A general rule from Table 1 for 
Hydrocarbon Lewis set wavefunctions is aAy < as < c~R with % and a~ in especially 
close agreement. The results do indicate that not only can similar results be 
obtained for properties such as the electrostatic potential [3] using the three models 
but also for a second order property ~. 

4.2. Molecular Fragment Wavefunctions, Wavefunctions Containing Additional 
Inner Shell Gaussians and Wavefunctions Containing S-Type Functions Only 

We now consider wavefunctions that use either a Lewis basis set or one containing 
only a few additional Gaussians. Firstly, the addition of an extra inner shell 
Gaussian on each carbon atom leads to improved results for both CH4 and C2H6 
using the formulae for ai~ and as. For CH~ we find a~ = 23.66 and as = 23.64 
whilst for C2H6 we obtain c~a = 41.80 and a s = 41.76 (10 -25 cc). However, the 
improvement over Lewis set results is only slight and simply using cq~y for these 
wavefunctions and ignoring inner shell Gaussians provides results of 23.39 and 
41.27 for CH~ and C2H6 respectively. 

Turning now to fragmenting techniques, for C2H6 using the orbital parameters and 
geometry of Ref. [17] with optimized density matrix elements provided by OPIT 
we find c~a = 43.16 and % = 43.16 in excellent agreement with the experimental 
value. For C2H~ using orbital and geometry values of Ref. [10] we obtain a~ = 
36.04 and as = 35.90 whilst using an experimental geometry we find an = 36.71 
and as = 36.47, again density matrix elements were found using OPIT. These 
results may be compared with values given in Table 1 and those given below and 
clearly the formulae can be used in conjunction with fragmenting techniques. 

Using the original formula, c~Ay values obtained using Frost model Lewis set wave- 
functions containing just s-type functions for pi-bonding systems C2H2 and 
C2H4 [2, 18] were poorer than those for saturated systems or results obtained 
using p-type functions [4]. Using the point charge model formulae in conjunction 
with those wavefunctions and geometries, but with density matrix elements deter- 
mined by OPIT, we find a~ = 37.60 and % = 37.47 for C2H4 and aR = 42.01, 

Table 2. Electric polarizabilities of molecules containing lone pairs ~ 

Molecule ~Ar ~ ~s Experimental b 

NHa 18.2 18.9 20.2 22.2 
H20 9.0 12.9 14.2 14.4 

a Units of 10 -25 cc. b Ref. [22l. 
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a s = 38.65 for C2H2 showing improvement over the aAy result of  36.9 for C2H4 
but not for C2H2 when we find a,~y = 31.6. 

4.3. Atomically Centered Wavefunctions 

Of particular interest are species for which Frost model Lewis set wavefunctions 
give a poor result for a such as molecules containing lone pairs. In Table 2 results 
are given using aAy for wavefunctions from Ref. [18] for H20 and NH3 and this 
may be compared with values obtained for a~i and a s for atomically centred wave- 
functions. Two s-type Gaussians were centered on each hydrogen whilst four s-type 
Gaussians and two p-type Gaussians for each direction, making a total of  ten 
Gaussians, were centred on each heavy atom, O and N. Exponents were taken 
from the unconstrained set given by Pople et al. [7] but the contraction coefficients 
were not used and the density matrix using all the functions was found by OPIT. 

As can be seen from the table the use of these atomically centred wavefunctions, 
of  approximately STO-2G complexity, in conjunction with aH or as, gives an 
improved result over the Lewis set value aA,z especially for water. 

5. Discussion 

The proposed point charge model formulae aH and a s provide excellent results for 
a number of  different types of  wavefunction. The results for Lewis set wavefunc- 
tions for hydrocarbons are in good agreement with experiment and the original 
formula, aAy, whilst the addition of an extra inner shell orbital provides slightly 
improved results for CH4 and C~H6. The formulae may also be used in conjunction 
with molecular fragmenting techniques as well as wavefunctions containing just 
s-type functions, even for pi-bonding systems. Atomically centred wavefunctions 
of  approximately STO-2G complexity provide good results for H20  and NH3 
using a~i and as, showing improvement over the Lewis set value aAy. 

The formulae are derived for s-type Gaussians but we can in fact use p-type 
Gaussians as well. For in the case of  p-type Gaussians in conjunction with the 
Hall model the total charge will once more be conserved but the dipole moment  
will not. We may use exactly the same point charge model as before or, alterna- 
tively, using differential operators it is possible to construct a point charge model 
for s- and p-type Gaussians that retains the same point charges as before and also 
conserves the dipole moment  [20]. Either way we may use exactly the same formulae 
for aH and as for p-type Gaussians as well. Indeed it is possible to show quantum 
mechanically that the formula for %y applies not only to s-type functions but 
p-type Gaussians as well [4] and so it is to be expected that the same should hold 
for aH and as. 

Currently we are considering other properties and interaction coefficients using 
point charge models. 
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